Abstract

We report the development of an artificial hair cell (AHC) sensor with design inspired by biological hair cells. The sensor consists of a silicon cantilever beam with a high-aspect-ratio cilium attached at the distal end. Sensing is based on silicon piezoresistive strain gauge at the base of the cantilever. The cilium is made of photodefinable SU-8 epoxy and can be up to 700-mum tall. In this paper, we focus on flow-sensing applications. We have characterized the performance of the AHC sensor both in water and in air. For underwater applications, we have characterized the sensor under two flow conditions: steady-state laminar flow (dc flow) and oscillatory flow (ac flow). The detection limit of the sensor under ac flow in water is experimentally established to be below 1 mm/s. A best case angular resolution of 2.16deg is also achieved for the sensor's yaw response in air.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.