Abstract

For investigating human transcranial ultrasound imaging (TUI) through the temporal bone, an intact human skull is needed. Since it is complex and expensive to obtain one, it requires that experiments are performed without excision or abrasion of the skull. Besides, to mimic blood circulation for the vessel target, cellulose tubes generally fit the vessel simulation with straight linear features. These issues, which limit experimental studies, can be overcome by designing a 3-D-printed skull model with acoustic and dimensional properties that match a real skull and a vessel model with curve and bifurcation. First, the optimal printing material which matched a real skull in terms of the acoustic attenuation coefficient and sound propagation velocity was identified at 2-MHz frequency, i.e., 7.06 dB/mm and 2168.71 m/s for the skull while 6.98 dB/mm and 2114.72 m/s for the printed material, respectively. After modeling, the average thickness of the temporal bone in the printed skull was about 1.8 mm, while it was to 1.7 mm in the real skull. Then, a vascular phantom was designed with 3-D-printed vessels of low acoustic attenuation (0.6 dB/mm). It was covered with a porcine brain tissue contained within a transparent polyacrylamide gel. After characterizing the acoustic consistency, based on the designed skull model and vascular phantom, vessels with inner diameters of 1 and 0.7 mm were distinguished by resolution enhanced imaging with low frequency. Measurements and imaging results proved that the model and phantom are authentic and viable alternatives, and will be of interest for TUI, high intensity focused ultrasound, or other therapy studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call