Abstract

We present a velocity-map imaging (VMI) apparatus coupled with a magneto-optical trap (MOT) of 87Rb atoms designed for low-energy photo-ion spectroscopy. The VMI-electrode geometry uses a three-electrode configuration, and the focusing electric field is optimized based on systematic simulations of relatively low-energy ions. To calibrate the apparatus, we use resonant two-color two-photon ionization of rubidium atoms as Doppler-selected ions. This VMI system provides an accuracy of 0.15m/s and a resolution of 7.5m/s for photoions with speeds below 100m/s. Finally, details of the design, construction, and testing of the VMI-MOT system are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.