Abstract
Sterosomes are recently developed types of non-phospholipid liposomes formed from single-chain amphiphiles and high content of sterols. Although sterosomes presented significantly increased stability compared to conventional phospholipid liposomes, current sterosome biomaterials are not truly bioactive and have no intrinsic therapeutic effects. The purpose of this study was to develop a sterosome formulation with osteoinductive properties by an effective selection of sterol, one of the sterosome components. Oxysterols are oxidized derivatives of cholesterol and are known to stimulate osteogenesis and bone formation. Thus, 20S-hydroxycholesterol (Oxy), one of the most potent oxysterols for bone regeneration, was examined as a promising candidate molecule to form fluid lamellar phases with a single-chain amphiphile, namely, stearylamine (SA). First, the optimal composition was identified by investigating the phase behavior of SA/Oxy mixtures. Next, the capacity of the optimized SA/Oxy sterosomes to promote osteogenic differentiation of bone marrow stromal cells was assessed in vitro in a hydrogel environment. Furthermore, we explored the effects of osteogenic oxysterol sterosomes in vivo with the mouse critical-sized calvarial defect model. Our results showed that SA/Oxy sterosomes induced osteogenic differentiation in vitro and enhanced calvarial healing without delivery of additional therapeutic agents, indicating their intrinsic bone-forming potential. This study suggests a promising non-phospholipid liposomal platform with osteoinductive properties for delivery of small molecular drugs and/or other therapeutic genes for enhanced bone formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.