Abstract
Thin, highly compliant sensing skins could provide valuable information for a host of grasping and locomotion tasks with minimal impact on the host system. We describe the design, fabrication, and characterization of a novel soft multi-axis force sensor made of highly deformable materials. The sensor is capable of measuring normal and in-plane shear forces. This soft sensor is composed of an elastomer (modulus: 69 kPa) with embedded microchannels filled with a conductive liquid. Depending on the magnitude and the direction of an applied force, all or part of the microchannels will be compressed, changing their electrical resistance. The two designs presented in this paper differ in their flexibility and channel configurations. The channel dimensions are approximately 200 × 200 μm and 300 × 700 μm for the two prototypes, respectively. The overall size of each sensor is 50 × 60 × 7 mm. The first prototype demonstrated force sensitivities along the two principal in-plane axes of 37.0 and -28.6 mV/N. The second prototype demonstrated the capability to detecting and differentiating normal and in-plane forces. In addition, this paper presents the results of a parameter study for different design configurations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.