Abstract

Generally, PM machines are used as PMG pre-exciters in 3-stage brushless excitations systems. This paper presents the design, characterization, and prototyping of a rotating brushless PM exciter used in a proposed 2-stage excitation system for a synchronous generator. The proposed design reduces the number of components compared with conventional systems. A comparison with the state-of-the-art conventional excitation systems is given. The design of a fast-response, or high initial response, brushless exciter requires active rectification on the rotating frame, replacing the noncontrollable diode bridge. The objective was to construct an exciter with the capability of a 50 A output field current, as well as a high value of the available ceiling voltage and ceiling current. The final exciter was constructed to be fitted into an in-house synchronous generator test setup. A finite element model of the exciter was validated with experimental measurements. The exciter prototype is also compared with an alternative armature design with nonoverlapping single-layer concentrated windings, but with the same main dimensions. The paper includes a general design procedure suitable for optimization of PM brushless exciters that fulfill the requirements of their synchronous generators and the grid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call