Abstract

A new trend for tactile microprobes leads to oscillating microprobes in order to overcome the drawbacks resulting from high Hertzian stress and disturbing surface forces. Thin water films on the measurement surface result in the so-called sticking effect which causes measurement faults such as snap-back and false triggering. This leads to measurement errors and low measurement speeds. We present an innovative oscillating triaxial microprobe which safely avoids sticking in all Cartesian measurement directions. The system design as well as the characterization of the microprobe are presented in this work. The low number of coupling elements, the batch-capable design and the low contact forces are the key features of the microprobe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.