Abstract
Tumor necrosis factor-alpha (TNFα) inhibitors could prevent neurological disorders systemically, but their design generally relies on molecules unable to cross the blood-brain barrier (BBB). This research was aimed to design and characterize a novel TNFα inhibitor based on the angiopeptide-2 as a BBB shuttle molecule fused to the extracellular domain of human TNFα receptor 2 and a mutated vascular endothelial growth factor (VEGF) dimerization domain. This new chimeric protein (MTV) would be able to trigger receptor-mediated transcytosis across the BBB via low-density lipoprotein receptor-related protein-1 (LRP-1) and inhibit the cytotoxic effect of TNFα more efficiently because of its dimeric structure. Stably transformed CHO cells successfully expressed MTV, and its purification by Immobilized-Metal Affinity Chromatography (IMAC) rendered high purity degree. Mutated VEGF domain included in MTV did not show cell proliferation or angiogenic activities measured by scratch and aortic ring assays, which corroborate that the function of this domain is restricted to dimerization. The pairs MTV-TNFα (Kd 279 ± 40.9nM) and MTV-LRP1 (Kd 399 ± 50.5nM) showed high affinity by microscale thermophoresis, and a significant increase in cell survival was observed after blocking TNFα with MTV in a cell cytotoxicity assay. Also, the antibody staining in CHOK1 and bEnd3 cells demonstrated the adhesion of MTV to the LRP1 receptor located in the cell membrane. These results provide compelling evidence for the proper functioning of the three main domains of MTV individually, which encourage us to continue the research with this new molecule as a potential candidate for the systemic treatment of neurological disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.