Abstract

In order to characterize and optimize the beam emittance compensation scheme [L. Serafini and J. B. Rosenzweig, Phys. Rev. E 55, 7565 (1997)] of the Sorgente Pulsata Autoamplificata di Radiazione Coerente project [D. Alesini et al., Nucl. Instrum. Methods Phys. Res. A 507, 345 (2003)] high brightness preinjector a system to accurately measure the beam rms emittance evolution downstream of the rf gun has been developed. Since in a space charge dominated beam the quadrupole-scan method is not applicable, a movable emittance measurement device has been built based on the pepper-pot technique. The device consists of a double system of horizontal and vertical slit arrays and a downstream screen, all installed on a longitudinally movable support equipped with bellows and spanning the ≈1.2m long drift space between gun and first accelerating section. The system allows the measuring of the beam rms emittance all along the spanned region so as to accurately reconstruct its evolution along the beam trajectory. More than a simple improvement over more conventional beam emittance measurement tools this device defines a new strategy for characterizing high performance photoinjectors as it allows a detailed analysis of the beam behavior over a section of the accelerator where crucial beam shaping takes place. Numerical simulations of the measurement, mainly based on PARMELA [J. Billen, PARMELA Report No. LA-UR 96-1835, 1996 (unpublished)], have been used to estimate the achievable accuracy and to optimize the experimental setup. Wake field effects induced by the beam propagation through the bellows have also been investigated with HOMDYN [M. Ferrario et al., LCLS Report No. SLAC-PUB 84000, 1999 (unpublished)]. A series of laboratory tests to evaluate its performance has been carried out at LNF in Frascati. The system was then moved to DESY Zeuthen and installed on the Photo Injector Test Facility PITZ, for further testing with beam. Design criteria and tests carried out to evaluate the device performance are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call