Abstract

Four‐blade static mixer was designed for inline mixing of Newtonian fluids at Reynolds numbers from 700 to 6800. The mixer consists of four equally spaced blades mounted on cylindrical housing with 45° rotation relative to the circumference. It was tested in three different compartments of 6, 8, and 10 mixing elements; each element rotated 45° relative to the adjacent one. Multipoint sampling was used to measure concentration downstream the mixer. The mixing quality was measured by the coefficient of variance (CoV). The CoV decreases as the energy input per unit mass increases. This effect is more pronounced when the number of mixing elements increases. For the case of 10 mixing elements, a good mixing performance (typically more than 95% mixedness or CoV < 0.05) achieved, although a marginally good mixing performance could also be achieved by eight mixing elements. The friction factors were correlated as f = C1/Re + C2/Ren with an average deviation of ±10% from experimental data. Furthermore, experimental friction factors were compared with existing models. For a wide range of Reynolds numbers, the friction factors are apparently smaller than those from SMV, KMX, and baffle‐type static mixers. © 2018 American Institute of Chemical Engineers AIChE J, 65: 1126–1133, 2019

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.