Abstract
The design principles and radiation performances of Mikaelian lens antennas are presented. The ways to manufacture gradient index lenses are briefly reviewed. An innovative technique based on the variation of the foam density is described and applied to the Mikaelian lenses. This yields low cost and lightweight gradient index lenses. The focusing properties of Mikaelian lenses are compared numerically to Luneburg lenses. A foam-based planar Mikaelian lens antenna is manufactured and its radiation performances are characterized at 60 GHz. With its flat shape in contact to the primary source, the cylindrical Mikaelian lens turns out to be, for focusing purposes, an interesting alternative to the well-known Luneburg lens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: International Journal of Microwave and Wireless Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.