Abstract

With the increasing flourishing of miniaturized, multifunctional, and heterogeneously integrated system in package (SiP), heating problem is becoming more and more serious. In this paper, to meet the heat dissipation needs of the chips thus assembled and to achieve effective thermal management, linear, serpent and spiral shaped microchannel heat sinks were designed and fabricated into copper substrate by electrical discharge machining (EDM) and precision machining technology, acting both as the cooler and mounting base for passive and active SiP interposers. A test platform was set up to characterize the heat dissipation performance of the copper-based microchannel heat sink. The experimental and simulation results show that heat dissipation rate increases with the increasing heat flux density in the range 5–30 W/cm2 for the three microchannel designs, and the peak temperature can all be kept below 340 K (67[Formula: see text]C) even for the highest heat flux. The three designs are compared from the perspective of peak temperature, temperature distribution uniformity and pressure drop. In all, the solution proposed hereby provides a new and optimal option for in-situ cooling for densely integrated electronic hardware.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call