Abstract
We describe the design, fabrication, and measured characteristics of the high-power optically pumped-semiconductor (OPS) vertical-external-cavity surface-emitting lasers (VCSELs). Using diode laser pumping, we have recently demonstrated operation of such lasers, which for the first time generate high (watt-level) power and a circular Gaussian beam directly from a semiconductor laser. These OPS-VECSELs have a strain-compensated multi-quantum-well InGaAs-GaAsP-GaAs structure and operate CW near /spl lambda//spl sim/1004 nm with output power of 0.69 W in TEM/sub 11/ mode, 0.52 W in TEM/sub 00/ mode and 0.37 W coupled to a single-mode fiber. With multiple pump and gain elements, OPS-VCSEL technology is scalable to the multiwatt power levels. Such lasers will prove useful in a variety of applications requiring compact and efficient sources with high-power output in a single-mode fiber or with diffraction-limited beam quality.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Selected Topics in Quantum Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.