Abstract

Stress sensors have shown potential to provide “health monitoring” of a wide range of issues related to packaging of integrated circuits, and silicon carbide offers the advantage of much higher temperature sensor operation with application in packaged high-voltage, high-power SiC devices as well as both automotive and aerospace systems, geothermal plants, and deep well drilling, to name a few. This paper discusses the theory and uniaxial calibration of resistive stress sensors on 4H silicon carbide (4H-SiC) and provides new theoretical descriptions for four-element resistor rosettes and van der Pauw (VDP) stress sensors. The results delineate the similarities and differences relative to those on (100) silicon: resistors on the silicon face of 4H-SiC respond to only four of the six components of the stress state; a four-element rosette design exists for measuring the in-plane stress components; two stress quantities can be measured in a temperature compensated manner. In contrast to silicon, only one combined coefficient is required for temperature compensated stress measurements. Calibration results from a single VDP device can be used to calculate the basic lateral and transverse piezoresistance coefficients for 4H-SiC material. Experimental results are presented for lateral and transverse piezoresistive coefficients for van der Pauw structures and p- and n-type resistors. The VDP devices exhibit the expected 3.16 times higher stress sensitivity than standard resistor rosettes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call