Abstract
A local heat–flux measurement system was built, calibrated, and tested for use in unsteady flows. The system was designed to maintain constant-wall-temperature boundary conditions. The measuring element is a thin-film heat flux gage made by sputter-coating gold onto a substrate. A constant-temperature anemometer is used to maintain the thin-film gage at a specified temperature under fluctuating conditions. A separate temperature control system maintains the surrounding boundary at the gage temperature. The system was calibrated for both steady and unsteady flows using a specially designed calibrator for local heat flux gages. The steady calibration was done with predominantly convective heat transfer. The unsteady calibration was achieved by adding oscillating radiant energy to the surface. Consequently, quantitative results can be obtained for both the mean and fluctuating components of the heat transfer. The frequency response was good to over 90 Hz. Sample results are presented of the unsteady heat transfer over a circular cylinder caused by natural vortex shedding at 70 to 80 Hz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.