Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disorder associated with memory and cognitive impairment. Donepezil is an acetylcholinesterase inhibitor used for the symptomatic treatment of AD. However, high dose of donepezil is prescribed to achieve effective concentration in the brain, which leads to significant side effects, gastrointestinal alterations, and hepatotoxicity. In the present study, ApoE3 conjugated polymeric nanoparticles derived from diblock copolymer methoxy poly(ethylene glycol)-polycaprolactone (mPEG-PCL) have been used to boost the delivery of donepezil to the brain. mPEG-PCL is an amphiphilic diblock polymer with a tendency to avoid nanoparticle uptake by phagocytic cells in the liver and can significantly reduce the gastric mucosal irritations. Moreover, ApoE3-based nanocarriers showed a promising ability to enhance brain uptake, binding to amyloid beta with high affinity and accelerating its clearance. Donepezil-loaded polymeric nanoparticles were performed by using a nanoprecipitation method and further surface modified with polysorbate 80 and ApoE3 to increase the brain bioavailability and reduce the dose. Optimization of various process parameters were performed using quality by design approach. ApoE3 polymeric nanoparticles were found to be stable in simulated gastric fluids and exhibited a sustained drug release pattern. Cellular uptake studies confirmed better neuronal uptake of the developed formulation, which is further corroborated with pharmacokinetic and biodistribution studies. Orally administered ApoE3 polymeric nanoparticles resulted in significantly higher brain donepezil levels after 24 h (84.97 ± 11.54 ng/mg tissue) as compared to the pure drug (not detected), suggesting a significant role of surface coating. Together, these findings are promising and offer preclinical evidence for better brain availability of donepezil by oral administration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.