Abstract

The use of virtual reality (VR) in firefighter training is promising because it provides cost-effective, safe environments that arouse similar behavioral responses to real-life scenarios. However, the pedagogical potential of VR and its impact on learning outcomes compared to traditional methods is currently an under-explored area. This research investigates how well VR can support learning compared to traditional methods in the context of training firefighters in combating vegetation fires. A VR learning environment was developed, informed by a “design for learning” framework providing a pedagogical underpinning. A between-subjects experiment was conducted with 40 participants to measure the knowledge transfer of the VR learning environment against the official textbook. In addition, VR's theorized learning benefits of intrinsic motivation, situational interest, and self-efficacy were compared with textbook-based learning. Lastly, the design quality of the learning environment was assessed based on its learning and user experience. We employed a primarily quantitative approach to data collection and analysis, using a combination of knowledge test results and questionnaires, with supporting qualitative data from semi-structured interviews and observation notes to answer our hypotheses. The results found a significant difference between the knowledge transfer of both conditions, with textbook-based learning more effectively transferring factual and conceptual knowledge than VR. No significant difference was found in reported self-efficacy between the two conditions but was found in reported levels of intrinsic motivation and situational interest, which were higher in the VR condition. The design was found to have facilitated a good user and learning experience, assessed via questionnaire responses. During interviews, VR participants reported high levels of satisfaction with the experience, praising the hands-on learning approach and interactivity, while reporting frustration with the lack of knowledge reinforcement and initial difficulties with the controls. A key finding was that presence was found to be negatively associated with knowledge transfer, which we theorize to be caused by the novelty of the realistic VR environment distracting participants from the more familiar lesson content. This research contributes to the body of work related to knowledge transfer within VR in this domain while highlighting key pedagogical and design considerations that can be used to inform future design implementations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.