Abstract

In this paper, an improved ant colony optimization (IACO) with global pheromone update is proposed based on ant colony optimization (ACO), and it is used to design interval Type-2 TSK fuzzy logic system (FLS), including parameters adjustment and rules selection. The performance of the system can be improved by obtaining the optimal parameters and reducing the redundant rules. In order to verify the feasibility of the proposed method, the intelligent FLS is applied to predict the international petroleum price and the Zhongyuan environmental protection shares price. It is proved that the IACO can improve the efficiency of the original algorithm and accelerate the convergence speed. The simulations show that both IACO and ACO are feasible and have a high performance for the design of FLS. The simulation results compared with back-propagation design (BP algorithm) show that intelligent algorithms have an advantage over the classical algorithm, the simulation result compared with without rule-selection shows that reduced redundant rules can improve the performance, and the result compared with the Type-1 FLS shows that interval Type-2 TSK FLS has a better performance than the Type-1 TSK FLS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.