Abstract

There is an increasing demand for development of new sensors and sensor strategies for accurate detection and discrimination of various analytes. In this regard, colorimetric and fluorometric sensor approaches have attracted considerable attention, primarily because they represent facile and inexpensive analytical tools. In this dissertation, I discuss the design and application of sensors and sensor arrays using task specific organic salts: ionic liquids (ILs) and a group of uniform materials based on organic salts (GUMBOS). As compared to typical ionic compounds, these two classes of organic salts exhibit relatively lower melting points due to bulky organic cations and/or anions. Interestingly, the physicochemical properties of these compounds can be easily tuned by altering either the cation or the anion. Furthermore, the respective ions of ILs and GUMBOS can be independently tailored in order to obtain specific functionalities. The first part of this dissertation provides a general discussion on ILs and GUMBOS. In addition, the principle and application of sensors and sensor arrays are discussed. The second part of this dissertation is primarily focused on four different studies, which involve design and application of task-specific organic salts for chemical and biochemical sensing. All four of these studies, which appear in Chapters 2-5, report on novel sensor or sensor array approaches with distinct advantages for analytical measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call