Abstract

The control of secondary cooling is extremely important for the quality of billet in the continuous casting. In order to minimise the variation in surface temperature and excessive reheating of billet, which have a considerable influence on the formation of cracks and other defects, a real time heat transfer model that can be used for simulation of varying casting operations was developed. In order to verify the dynamic performance of this model, a charge coupled device temperature measurement system that can eliminate the impact of the scales was presented. The actual shell thickness profile and billet temperature were calculated in real time by this model online and were taken into account to feedback control the casting process based on the desired target cooling pattern to improve the existing cooling system. The dynamic control system based on this model was developed and implemented on some caster, and the billet quality was obviously improved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.