Abstract

In order to effectively design an energy harvesting system for any specific application, a model that accurately characterizes the energy harvesting parameters is needed. In the present paper a novel magneto-electro-elastic (MEE) cantilever beam has been proposed and modeled as an effective means to increase the harvested electrical power in a vibration-based energy harvesting system. The cantilever beam is composed of a linear homogeneous elastic substrate and two MEE layers with perfect bonds between their interfaces. Using the constitutive equations, Gauss's and Faraday's laws, based on the Euler–Bernoulli beam theory, the coupled magneto-electro-mechanical (MeM) differential equations are derived for a harmonic base excitation in the transversal direction with a superimposed small rotation. The resulting equations are then solved analytically to obtain the dynamic behavior as well as the harvested voltages and powers of the proposed energy harvesting system. Finally, parametric numerical studies are used to examine the effect of excitation frequency, external resistive loads, and material properties on the performance of the MEE energy harvester. The study reveals that the implementation of the coil circuit has resulted in an increase in the total useful harvested power. According to the numerical results, any increase in the Young's modulus and density of the substrate layer (across the ranges that have been studied and while the properties of the MEE layer are kept constant), increases the magnitude of the magnetoelectric harvested power in the unimorph MEE energy harvester system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.