Abstract
AbstractIn this study, a compact ultra-wideband (UWB) antenna with quintuple band-notched and wide-band rejection characteristics is studied. The proposed antenna mainly consists of a rectangular radiating patch, a microstrip feeding line, and a modified rectangular ground plane. The quintuple band-notched functions with narrow stop bands are achieved at WiMAX (3.3–3.7 GHz), WLAN (5.15–5.35 GHz and 5.725–5.825 GHz), C-band IEEE INSAT/super-extended (6.7–7.1 GHz) by using three modified inverted U-shaped slots and two symmetrical rectangular slots on the radiating path. Each stop band formed in the UWB antenna can be adjusted independently, and deep reflection zeros are formed between the adjacent stop bands. The formation of reflection zeros improves the band-edge selectivity of the stop band, and the notch characteristics are more prominent. To further study the wide stop band (C-band and X-band) with good selectivity characteristics, a pair of L-shaped open slot is added to the edges of two rectangular slots. Additionally, a pair of modified Rho-shaped resonators is located near the feeding line to realize band-notched characteristic at ITU service bands (8.025–8.4 GHz), thus a quintuple band-notched UWB antenna is achieved. The shape factor (ratio of the −3 dB bandwidth to the −10 dB bandwidth) of the wide stop band is 0.56, which indicates that the antenna has excellent band-edge selectivity. To verify the performance of the proposed design, both the time-domain and the frequency-domain characteristics of the antenna have been studied and analyzed. The simulated and measured results verify the design as a good candidate for various portable UWB applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Microwave and Wireless Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.