Abstract

The painting on tall structures, statues, monuments and buildings is dangerous task for humans. Robotics finds its applications in operations, which are repetitive, hazardous, and dangerous. The aim of the present work is to design a manipulator for spray painting on surfaces of tall monuments, statues and structures. The robot can be installed on a crane platform for lifting and operated from the ground. A lightweight and compact design is desired that can be easily accommodated within the space of the crane. A Revolute-Revolute-Revolute-Prismatic (RRRP) type Robotic arm is developed and analysed for this application. By establishing the rigid body tree model in Robotics System Toolbox, the numerical model of direct and inverse kinematics using Homogenous Matrix Transformation is prepared in MATLAB. Using the spray patch method and offline programming method, the spray model is prepared in Solid woks to obtain trajectory waypoints. A B-spline path is generated through these waypoints. At each waypoint, joint displacement variables are calculated using an inverse kinematic model. An air-less spray gun is selected and attached with a robot. Controlled motion algorithm for spray painting operation on a circular surface were obtained with simulation results. A smooth trajectory for performing spray painting is obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call