Abstract

This paper describes a design to achieve good microwave power transmission from an air filled rectangular waveguide to a narrow dielectric filled waveguide using a stepped impedance transformer. A novel material Ba(Zn1/3Ta2/3)O3 (BZT) having high dielectric constant and low dielectric loss has been proposed as a microwave window. The advantages of using such dielectric resonator materials for these applications is that they make the size reduction of such microwave components possible without unleashing microwave dissipation. A high density (more than 97%) and good microwave dielectric properties are obtained for BZT samples through the solid state reaction method. The obtained dielectric parameters are used to calculate the dimensions of the narrow dielectric window section in waveguide geometry and the resulting dielectric window structure is simulated using the IMST Empire simulator. The maximum power transmission is obtained by the simulated structure with a dielectric filled waveguide window of thickness 7.4 mm at 3.7 GHz with bandwidth of 780 MHz, which corresponds to an insertion loss (S21) magnitude of 0.008 dB, and the return loss (S11) obtained at the same frequency is −43 dB. The microwave dielectric properties of the material used as well as the simulated results for the BZT based window are studied and compared with those of a conventional window.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.