Abstract

One of the most interesting developments of energy systems based on the utilization of hydrogen is their integration with renewable sources of energy (RES). In fact, hydrogen can operate as a storage and carrying medium of these primary sources. The design and operation of the system could change noticeably, depending on the type and availability of the primary source. In this paper, the results obtained considering a model of a stand-alone energy system supplied just with RES and composed by an electrolyzer, a hydrogen tank and a proton exchange membrane fuel cell are exposed. The energy systems have been designed in order to supply the electricity needs of a residential user in a mountain environment in Italy during a complete year. Three different sources have been considered: solar irradiance (transformed by an array of photovoltaic modules), hydraulic energy (transformed by a micro-hydro turbine in open-flume configuration) and wind speed (transformed by a small-size wind generator). It has been checked that, in that specific location, it is absolutely not convenient to use the wind source; the solar irradiance has a nearly constant availability during the year, and therefore the seasonal storage of the RES in form of hydrogen is the lowest; the availability of the micro-hydro source is less constant than in case of solar irradiance, requiring a higher hydrogen seasonal storage, but its advantage is linked to the higher efficiency of the turbine and the fact that the RES is directly sent to the user with high frequency (for these reasons it is the best plant option).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call