Abstract

The aim of our study was to develop microfluidic devices using microchannel technology with the capability of capturing single cells. We analyzed and compared the cell-capturing efficiencies of series-loop microchannel and parallel-loop microchannel devices that were produced using polydimethylsiloxane (PDMS). Each set of microchannels was composed of a main flow channel and several branch channels with capturing zones. The microfluidic devices were designed to use the differences in flow rates between the main flow channel and the branch channels as a means of capturing single cells based on size and sequestering them within the microstructure of multiple capture zones. The data indicated that the flow medium encountered significant resistance in the series-loop microchannel device, which resulted in an inability to hold the captured cells within any of the capture zones. Flow resistance was, however, greatly reduced in the parallel-loop microchannel device compared to the series-loop device, and single cells were captured in all the capturing zones of the device. Our data suggest that the parallel-loop microchannel technology has significant potential for development toward high-throughput platforms capable of capturing single cells for physiological analyses at the single-cell level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call