Abstract

Quantum dot-cellular automata (QCA) technology has recently emerged as a potential candidate for the design of nanometer-scale computational circuits. In digital logic circuits, the comparator is the basic building block for comparing two binary values. This paper presents and implements two 1-bit QCA-based comparator designs. The proposed QCA implementations are compact, require only a single layer and are less complex compared to recently reported designs. The QCADesigner tool has been used to confirm the functional validity of the proposed QCA structures. The simulation results of the proposed comparators have shown considerable improvements compared to their existing counterparts in terms of the number of QCA cells and occupational area requirements in addition to cost and efficient complexity values. Furthermore, all of the proposed structures are dissipating extremely low energy values. Thus, the proposed QCA-based comparators can be viewed as viable options for low power digital applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.