Abstract

Abstract The design of State-Feedback Fault Tolerant control for Semi-Active Suspension Systems is considered in this work, that exploits diverse simple-to-implement approaches. The suspension damper is assumed to undergo multiplicative (time-varying) faults, that can be estimated by (four) modular fault estimation observers. With these fault estimations, active fault tolerant control (FTC) schemes can be synthesized, based on the reconfiguration of nominal State-Feedback policies. Seven approaches are discussed: i) Direct fault compensation; ii) Pole placement compensation; iii) Fault-dependent pole placement; iv) Linear-fault-dependent Linear Quadratic Regulator (LQR) design; v) Polynomially-fault-dependent LQR parameters; vi) LQR with Fault-dependent controlled outputs; vii) Heuristic (vehicle-oriented) fault-dependent LQR synthesis. The performances of these methods are analysed and compared through realistic and high-fidelity simulations. Results show the overall good operation of the latter approaches to compensate fault events and maintain performances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.