Abstract

Fuel cells are being increasingly used in wide range of applications for stand-alone and grid connected systems due to their high efficiency and low emissions. A power conditioning unit, consisting of DC-DC converter and an inverter, is invariably used as an interface between the fuel cell and the load in a typical fuel cell system for ac applications because of unregulated nature of fuel cell voltage. In this research, a comparative analysis of different input ripple reduction methods, input current ripples, the output voltage ripples, and the size of passive components with high efficiency compared with the other topologies is done. The different dc/dc converter topologies is compared such as conventional Boost Converter (BC), Multi Device Boost Converter (MDBC), and Two-Phase Interleaved Boost Converter (IBC), Multi Device Interleaved Boost Converter(MDIBC) to verify its dynamic performance. The DC-DC converter topologies are designed and investigated by using MATLAB/Simulink. The simulation and experimental results have signified that interleaved converter topology is more efficient than other dc-dc converter topologies in achieving high performance and reliability for high-power dc-dc converters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call