Abstract

We propose and numerically investigate a refractive index sensor based on a one-dimensional slotted photonic crystal nanobeam cavity with sidewall gratings for refractive index sensing in a gaseous environment. By using the three-dimensional finite-difference time-domain method, we demonstrate that our proposed sensor simultaneously possesses a high quality factor of $ 3.71 \times {10^6} $3.71×106 and a high sensitivity of 508 nm/RIU (refractive index unit) at the resonant wavelength near 1583 nm, yielding a detection limit as low as $ 1.97 \times {10^{ - 6}} $1.97×10-6 RIU. Moreover, the mode volume of the cavity's fundamental resonant mode is found to be as small as $ 0.022(\lambda /n)^3 $0.022(λ/n)3, resulting in a very compact effective sensing area. We finally study and assess the effect of fabrication disorder on the performances of our proposed sensor. We believe our proposed sensor will be a promising candidate for applications not only in multiplexed biochemical sensing and multielement mixture detection, but also in optical trapping of single biomolecules or nanoparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call