Abstract

In this study, a vacuum-based modular actuator system named reconfigurable origami-based vacuum pneumatic artificial muscles (ROV-PAMs) is presented. The system consists of six types of actuating modules and three types of fluidic supporting modules each embedded with magnet-based connectors so that the modules can be assembled to modify the system behavior. The module can be used in a myriad of ways, including extending their working range, creating complex geometries upon deformation, and cooperating to improve overall performance. A simple analytical model for the actuating modules is derived based on the law of conservation of energy, and the model is verified experimentally which shows that this intuitive model can provide a reasonable prediction of performance. A block sorting robot is built using three different types of actuating modules with multiple fluidic supporting modules, and the robot shows that it is possible to flexibly and easily assemble modules to build a robot capable of completing diverse tasks. The ROV-PAM module and its concept can be applied to realize robotic designs, which can be altered on-the-fly to adjust its functionality to meet the evolving requirements required for truly flexible automation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call