Abstract
This paper studies the design of vector quantization on noisy channels and its high rate asymptotic performance. Given a tandem source-channel coding system with vector quantization, block channel coding, and random index assignment, a closed-form formula is first derived for computing the average end-to-end distortion (EED) of the system, which reveals a structural factor called the scatter factor of a noisy channel quantizer. Based on this formula, we propose a noisy-channel quantization design method by minimizing the EED. Experiments and simulations show that quantizers jointly designed with channel conditions significantly reduce the EED when compared with quantizers designed separately without reference to channel conditions, which reveals a practical and effective design for noisy-channel quantization as to simplify the channel model by considering a random index assignment. Furthermore, we have presented the high rate asymptotic analysis of the EED for the tandem system, while convergence analysis of the iterative algorithm is included in the Appendix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.