Abstract

This paper presents a new modular structure of the axial flux Switched Reluctance Motor (SRM). The design consists of four stator disks with each adjacent disk rotated 30 degrees apart and four rotor disks connected to a common shaft. The proposed design aims to reduce the unwanted radial force, mitigate the torque ripple, and improve the efficiency. The modular structure distributes the radial force and torque strokes along the axial length of the motor, potentially damping the torque pulsation. In addition, the modular structure would deliver the rating power at a lower current level, reducing the overall ohmic loss. Moreover, if a fault occurs on a motor disk or its control unit, the motor would still operate through other disks, increasing the reliability of the system. To verify the effectiveness of the proposed design, the magnetostatic and transient performance of the motor are compared with the conventional single layer structure using 3-D Finite-Element (FE) software tool.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.