Abstract

Polyvinilidene fluoride (PVDF) single-element transducers for high-frequency (>30 MHz) ultrasound imaging applications have been developed using MEMS (Micro-electro-Mechanical Systems) compatible techniques. Performance of these transducers has been investigated by analyzing the sources and effects of on-chip parasitic capacitances on the insertion-loss of the transducers. Modeling and experimental studies showed that on-chip parasitic capacitances degraded the performance of the transducers and an improved method of fabrication was suggested and new devices were built. New devices developed with minimal parasitic effects were shown to improve the performance significantly. A 1-mm aperture PVDF device developed with minimal parasitic effects has resulted in a reduction of insertion loss of 21 dB compared with devices fabricated using a previous method.

Highlights

  • High-frequency (>30 MHz) ultrasound imaging, with its microscopic resolution, has opened up new areas of medical study in the fields of ophthalmology, dermatology, and intravascular imaging (IVUS) [1,2]

  • The results show that polycarbonate-based transducers have lower voltage losses (15 dB, 11 dB, and 8 dB) compared with transducers fabricated on a silicon substrate

  • In order to obtain a realistic effect of the parasitic capacitance, insertion loss was compared between silicon and polycarbonate transducers with various aperture sizes with and without preamplifier

Read more

Summary

Introduction

High-frequency (>30 MHz) ultrasound imaging, with its microscopic resolution, has opened up new areas of medical study in the fields of ophthalmology, dermatology, and intravascular imaging (IVUS) [1,2]. High input impedance amplifiers in close physical proximity to the transducer have been used to prevent reduced SNR due to loading of the transducer by the corresponding signal/image processing console [8]. This approach can be implemented by integrating amplifier components with PVDF film, which along with its copolymers, are compatible with integrated circuit (IC) fabrication processes and are amenable with MEMS fabrication strategies [9]. The new minimal parasitic devices showed similar imaging resolutions as the previous devices the new devices with 1-mm diameter showed ~21 dB improvement in insertion loss

Device Development
Identification of On-Chip Parasitic Capacitances
Device with Minimal On-Chip Parasitics
Parasitic Capacitance Measurement
Insetion-Loss Measurements
10. Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.