Abstract

In a wireless power transfer (WPT) system, in order to reduce the leakage of the magnetic field in the space and to improve the transmission efficiency of the system, a magnetic shielding mechanism is usually added to the coupling coil. However, the commonly used ferrite material has defects of brittleness, easy cracking, and a low saturation limit. Therefore, a novel magnetic shielding mechanism based on a quartz fiber and nanocrystalline reinforced resin matrix composite material was proposed, and epoxy resin and cross-laminate-splicing processes were used to improve the resistivity of the nanocrystalline material and to improve the eddy current loss. A discretized geometric model was designed for quartz fiber, and the effects of different shielding structures on the space magnetic field and the power loss were simulated and analyzed. In the experiment, a space magnetic field measurement system was built, and the transmission efficiency was analyzed. The results showed that the new magnetic shielding mechanism has a good shielding effect, can effectively suppress leakage of the magnetic field in space, reduce the weight, and improve the mechanical performance while also achieving a high transmission efficiency of 85.6%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call