Abstract

AbstractThis article investigates the resonant behavior of a novel family of fractal boundary antennas at the fundamental mode of operation. The miniaturization patterns over iterations as well as over the number of segments on the boundary have been studied by simulating the fractal antennas in High Frequency Structure Simulator (HFSS). The antennas are fed by a 50‐Ω coaxial probe, which is placed at the best position on the patch, with impedance matching and S11 < −10 dB. Analysis of the resonant frequency with respect to the square‐shaped fractal generator resulted in curve‐fit expressions that vary with a single variable of either iteration or number of segments on the boundary. The derived equations are independent from the substrate thickness. They are useful to design miniature patch antennas within a specified area in order to resonate at a desired frequency by simply changing the boundary or the fractal iteration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call