Abstract
To improve the control accuracy and output torque of magnetic suspend and control gyroscope, a Lorentz magnetic bearing with double second auxiliary air gap is proposed, and its mechanical structure is introduced. Frist, the structure and working principle of the Lorentz magnetic bearing with second air gap is introduced and the magnetic circuit model of the magnetic bearing is established by the equivalent magnetic circuit method. Second, on the basis of the circuit model, the maximum magnetic flux density of the winding area is analysed by finite element method. The fluctuation rate of magnetic flux density in winding area with double air gap scheme is 5.9%, and the maximum magnetic flux intensity at the winding coil can reach 0.462T. Finally, a bearing prototype is made, the theoretical calculation and finite element simulation results are verified by experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.