Abstract

Ultrasonic peen forming (UPF) is an emerging technology that exhibits great superiority in both its flexible operating modes and the deep residual stress that it produces compared with conventional plastic forming methods. Although ultrasonic transducers with longitudinal vibration have been widely studied, they have seldom been incorporated into UPF devices for machining in confined spaces. To meet the requirements of this type of machining, a sandwich-type piezoelectric transducer with coupled longitudinal–flexural vibrational modes is proposed. The basic structure of the transducer is designed to obtain large vibrational amplitudes in both modes. Experimental results obtained with a prototype device demonstrate the feasibility of the proposed transducer. The measured vibrational amplitude for the working face in the longitudinal vibrational mode is 1.0 μm, and electrical matching increases this amplitude by 40%. The flexural vibration characteristics of the same prototype transducer are also tested and are found to be slightly smaller than those of longitudinal mode. The resultant working strokes of the UPF impact pins reach 1.7 mm and 1.2 mm in the longitudinal and flexural modes, respectively. The forming capability of the prototype has been evaluated via 15-min machining on standard 2024-T351 aluminum plates. After UPF, an improved surface morphology with lower surface roughness is obtained. The aluminum plate test piece has an apparent upper deformation with an arc height of 0.64 mm. The measured peak value of the compressive residual stress is around 250 MPa, appearing at a depth of 100 μm. The proposed longitudinal–flexural hybrid transducer thus provides a high-performance tool for plate peen forming in confined spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.