Abstract

This paper presents the results of an electromagnetic design and numerical analysis conducted on a 10-MW-class second-generation high-temperature superconducting generator (2G HTSG) used in an offshore wind power turbine. To report the operation reliability of 10-MW-class HTSGs employed in offshore environment, various electric insulation techniques (EITs) for HTS field coils (FCs), such as no-insulation, metal insulation, and metal-insulator transition insulation, are considered in this study. Using the time-transient solver of the three-dimensional (3D) electromagnetic finite element analysis (FEA), we investigated the electromagnetic characteristics of the HTSG with the three EITs in terms of the electrical output of the HTSG and the critical current of the FCs. To analyze the charging characteristic of the HTS FCs with the three EITs in steady-state operation as well as the electrical in transient-state operation, electric equivalent circuit models are built with key parameters based on the electromagnetic FEA results. Finally, the performances of the HTS FCs are discussed and evaluated in terms of the electromagnetic response and stability characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.