Abstract

Purpose: The temperature in Seoul has risen 3 times more than the average global temperature increase for the past 100 years. Today, summer starts 15 days earlier than the early 20th century and is 32 days longer. This tendency causes rapid increase of cooling energy demand. Following this effect, seawater heat resources are to be used as an countermeasure for global warming. Incheon Port near the Western Sea has the lowest water temperature in the winter in South Korea in which it is suitable to use seawater cold heat resources. Method: The cold heat resource is gained from seawater when the water temperature is the lowest in the winter time and saved in a seasonal thermal storage. This can be used as cold heat resource in the summer time. A heat exchanger is essential to gain seawater cold energy. Due to this necessity, sea water heat resource heat exchangers are modeled by heat transfer equations and the fluid characteristics are analyzed. Also, a CFD (computational fluid dynamics) program is used to conduct simulation on the fluid characteristics of heat exchangers. The analyzed data of deducted from this process are comprehensively analyzed and discussed. Result: Regarding the performance of the heat exchanger, the heat exchanger was operated following the prediction within the range of heat transfer rate of minimum 3.3KW to maximum 33.6KW per device. In the temperature change analysis of the heat exchanger, fluid analysis by heat transfer equations almost corresponded to the temperature change by CFD simulation. Therefore, it is considered that the results of this study can be used as design data of heat exchangers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call