Abstract

This article presents a thorough analysis of two distinct Physically Unclonable Functions (PUF), namely RO-PUF (Ring oscillator-based PUF) and RS-LPUF (RS Latch-based PUF), prototyped on FPGA. It is shown that the implemented PUFs possess significantly enhanced performance when compared to the state of the art. It is also identified that the enhancements are achieved through the incorporation of Programmable Delay Lines of FPGA Lookup Tables, the Temporal Majority Voting (TMV) scheme, and placed macro techniques for routing and placements of PUF units. The prototypes developed on Xilinx Artix-7 FPGAs are used for validation over the rated temperature range of 0-85° C with ±5% variation in the supply voltage. The proposed schemes when evaluated experimentally also achieve good uniformity, bit-aliasing, uniqueness, and reliability. Finally, it is shown that the proposed designs outperform the existing conventional PUFs in the area and speed tradeoff.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call