Abstract

Metasurface optics have demonstrated vast potential for implementing traditional optical components in an ultracompact and lightweight form factor. Metasurfaces, however, suffer from severe chromatic aberrations, posing serious limitations on their practical use. Existing approaches for circumventing this involving dispersion engineering are limited to small apertures and often entail multiple scatterers per unit cell with small feature sizes. Here, we present an alternative technique to mitigate chromatic aberration and demonstrate high-quality, full-color imaging using extended depth of focus (EDOF) metalenses and computational reconstruction. Previous EDOF metalenses have relied on cubic phase masks, where the image quality suffers from asymmetric artefacts. Here we demonstrate the use of rotationally symmetric masks, including logarithmic-aspherical, and shifted axicon masks, to mitigate this problem. Our work will inspire further development in achromatic metalenses beyond dispersion engineering and hybrid optical–digital metasurface systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.