Abstract

<span class="s22">In this paper, we proposed a hexagonal shaped </span><span class="s22">microstrip</span><span class="s22"> ultra-wideband (UWB) antenna integrated with dual band applications. The antenna design consists of a hexagonal shape patch with two folded Capacitive Loaded Line Resonators (CLLRs) on the left edge of the patch antenna. This hexagonal structure is used to implement UWB applications (3.1-10.6 GHz). A rectangular ground</span><span class="s22">,</span><span class="s22"> and two CLLR are also used on t</span><span class="s22">he bottom of antenna to obtain</span><span class="s22"> the extra dual resonant frequency at 2.4 GHz and 9.1 GHz for </span><span class="s22">B</span><span class="s22">luetooth and radar applications respectively. The proposed design is implemented using FR4 epoxy substrate. The relative permittivity of the substrate is 4</span><span class="s22">.4. The overall size of designing</span><span class="s22"> antenna is 26 × 30 mm2 with 1.6 mm as thickness and fed by standard feed line of 50 Ω </span><span class="s22">microstrip</span><span class="s22">. The results obtained from the simulation indicate that the designed antenna attains a good bandwidth from 1.1 GHz – 10.69 GHz with VSWR < 2 and return loss < -10 </span><span class="s22">dB.</span><span class="s22"> The proposed geometry is s</span><span class="s22">imulated by using the </span><span class="s22">Ansoft</span><span class="s22"> HFSS </span><span class="s22">simulator working on the principle of FEM and results are also analyzed.</span>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call