Abstract

Manual software testing is a notoriously expensive part of the software development process, and its automation is of high concern. One aspect of the testing process is the automatic generation of test inputs. This paper studies the Alternating Variable Method (AVM) approach to search-based test input generation. The AVM has been shown to be an effective and efficient means of generating branch-covering inputs for procedural programs. However, there has been little work that has sought to analyse the technique and further improve its performance. This paper proposes two different local searches that may be used in conjunction with the AVM, Geometric and Lattice Search. A theoretical runtime analysis proves that under certain conditions, the use of these searches results in better performance compared to the original AVM. These theoretical results are confirmed by an empirical study with five programs, which shows that increases of speed of over 50% are possible in practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.