Abstract

Permanent magnet synchronous machines have been universally used over induction machines in variable speed drives. For present trends and future developments, power electronics technology gives the extensive research of multilevel inverters that brings high safety voltages with low harmonic content in comparison with two-level inverter strategies. Multi level inverters implementation can be done by raising the number of power semi conductor controlled switching devices per phase to increase the number of inverter output voltage levels. By increasing the levels, power controlled switching devices and other components are increased, which makes the inverter complex and overpriced. From the above aspects, three-phase three-level inverter strategy is used for high performance and high voltage A.C drives. Multilevel inverter using a space vector pulse width modulation (SVPWM) strategy gives great advantages in high performance A.C drive applications. Various types of control strategies have been recommended for voltage source inverter fed A.C drives. In the proposed work, a PI controller is designed for the outer loop and non-linear controller using a state feedback linearization technique is designed for the inner loop. The closed loop control system for three-level inverter fed Permanent magnet synchronous motor drive employing SVPWM is extensively simulated using MATLAB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.