Abstract

This study presents the automotive instrument panel (IP) design in order to improve the quality, cost, and safety of the existing design. A few conceptual designs were generated based on safety aspect and ergonomic design. The most suitable design was selected using concepts scoring. The IP head impact simulation was conducted using finite element analysis (FEA) to predict the head injury criterion (HIC) value of the front passenger in vehicle according to ECE-R21 regulation. The finite element (FE) model, which consist of upper IP, lower IP, carrier structure and head-form, was built-up to carry out head impact analysis of the IP assembly. The optimum IP design was proposed by analysis of different materials, which are 20% talc filled rubber modified polypropylene (PP+EPDM-TD20), acrylonitrile butadiene styrene (ABS) polymer, and polypropylene (PP) copolymer. The HIC value for all IP was compared using simulation result and theoretical calculation. The lowest HIC value will reduce the head occupant injury. In this study, only the raw material cost was considered in cost evaluation. The IP from ABS polymer performed the lowest HIC value, which were 179.7 but very costly compare to other materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call