Abstract

Distributed power generation systems are expected to deliver active power into the grid and support it without interruption during unbalanced grid faults. Aiming to provide grid-interfacing inverters the flexibility to adapt to the coming change of grid requirements, an optimised active power control strategy is proposed to operate under grid faults. Specifically, through an adjustable parameter it is possible to change the relative amplitudes of oscillating active and reactive power smoothly, while simultaneously eliminating the second-order active or reactive power ripple at the two extremes of the parameter range. The steering possibility of the proposed strategy enables distributed generation inverters to be optimally designed from the perspectives of both the power-electronic converters and the power system. The proposed strategy is proved through simulation and further validated by experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.