Abstract

Traditional mechanical keys are gradually replaced with touch keys. Capacitive touch keys have advantages in achieving higher sensitivity with a longer service life and lower cost. Hence, the capacitive touch key technology is widely used in consumer electronic products. In use of household electric appliances, such as electric kettle, induction cooker and exhaust hood, sometimes the water vapor would condense into visible moisture or even the water would splash out of the pot when overheated, which may lead to a falsely trigger of touch key. So, waterproof becomes a big challenge in household electric appliances. This paper analyzes how water affects capacitive touch key and proposes a waterproof capacitive touch key sensor interface circuit to overcome the challenge. Sensing of touch key capacitor would be influenced only when water covers more than two touch keys. Compensating channels working in certain strategy are used to decrease the influence of water. For the same water capacitor, the bigger threshold voltage, the bigger change of the counting number. A much smaller threshold voltage is better to further weak the effect of water. The circuit is implemented in a standard 110 nm CMOS process. The measured results show that the touch Signal to Noise and Water Disturb Ration (SNWDR) is 20.7 dB which proves that the proposed waterproof capacitive touch key sensor interface circuit is effective against water splash.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call