Abstract

High-pressure nozzles and ultrasonic atomizers are the two most common devices used to generate sprays. Each of these has some disadvantages, such as controllability in high-pressure nozzles and fluid management challenges in ultrasonic devices. To overcome these limitations, a new atomization technology using a synthetic jet actuator was developed and is presented here. The work includes design and experimental analysis of both the stand-alone synthetic jet actuator and the synthetic jet-based atomization device. The synthetic jet actuator is designed using a model-based approach and characterized by measuring dynamic orifice pressure, diaphragm peak-to-peak displacement, flow rate, and power consumption. Orifice pressure reaches 296 Pa at a flow rate of 16 mL/s and 186 Pa at a flow rate of 37 mL/s for two possible synthetic jet actuator geometries, respectively. Piezoelectric diaphragm displacement reaches 50 µm with a brass substrate thickness of 0.20 mm. The synthetic jet-based atomization device is characterized with high-speed imaging and measurement of water atomization rate. It produces droplets with average sizes of 92–116 µm at maximum rates of 19–28 µL/s, depending on the geometry of the synthetic jet actuator. The outcomes of this work are principles for designing effective synthetic jet-based atomization devices, as well as system-level implementation concepts and control schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call