Abstract

Unobtrusive monitoring of physiological signals in natural settings is important for precision diagnostics. Fully-passive wireless body-worn sensors are viable and promising for unobtrusive monitoring. In this study, the authors present a new class of fully-passive sensor, namely wireless resistive analog passive (WRAP) sensor. It uses resistive transducers at the sensors for converting physical stimulus to load modulation of carrier wireless signal at 13.56 MHz at low power (–20 to 0 dBm). The sensor is simply composed of a loop antenna, a tuning capacitor, and a resistive transducer suitable for the type of physiological signals to be measured. The authors report the characterisation of WRAP sensors for various resistive loads of 1.2 ω to 82 kω at various co-axial distances (5–40 mm) between the TX and RX antennas. They have prototyped and characterised multiple WRAP sensors with several practical measurements of physiological signals such as heart rate, temperature, and pulse oximetry. They also demonstrate bio-potential measurement (down to 400 μVpp) using metal–oxide–semiconductor field-effect transistor as the transducer. These results show the feasibility of developing a new type of body-worn fully-passive WRAP sensors for unobtrusive physiological signal monitoring at real-life settings for precision diagnostics of many disorders and tracking person-centric therapy efficacy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.